Measurement and control of transport phenomena in nonaqueous flow batteries

Kirk Smith, Pedro Ascencio, David Howey, Charles Monroe

Monroe Group M-RHEX Battery/PV Workshop 26 November 2019

Disproportionation redox flow batteries (DRFBs)

- Cell reaction: $2 X \Longrightarrow X^+ + X^-$
- Identical oxidation states in fully discharged reservoirs
- Tolerant of active-species crossover
- Allow use of porous separators

Vanadium acetylacetonate as a model chemistry

Shinkle et al. 2011, Journal of Applied Electrochemistry

 E° = 2.2 V with acetonitrile as solvent, TEABF₄ as salt

- At 40 mA/cm², 0.1 M V(acac)₃:
 - Energy efficiency > 70%
 - Energy density > 75% of theoretical
 - > 200 mW/cm² peak power density

Vanadium acetylacetonate cycles stably

6 days of cycling shown

Experimental setup for nonaqueous DRFBs

Adapted from Milshtein et al. 2016, Energy & Env. Sci. and Saraidaridis and Monroe 2019, Journal of Power Sources

Adapted from Milshtein et al. 2016, Energy & Env. Sci. and Saraidaridis and Monroe 2019, Journal of Power Sources

Imbalance limits capacity and repeatability

Multiples sources of crossover and imbalance

- 1. Molecular diffusion, from:
 - a) Concentration gradient of active species/salt ions
 - b) Solvent migration, from electro-osmotic drag of actives and salt ions [1]
- 2. Pressure-driven permeation, from:
 - a) Difference in hydraulic head across half-cells [2]
 - b) Osmotic pressure from concentration differences

[1] Weber et al. 2011, J. Appl. Electrochem, [2] Li et al. 2014, ChemSusChem

DRFB model for separator characterization

- Higher crossover due to porous separator
- Lower coulombic efficiency: $\approx 85\%$
- SOC via coulomb counting impractical
- Need for model which quantifies SOC and self-discharge simultaneously

<i>SOC</i> _{res}	reservoir state-of-charge	-	F	Faraday's constant	C/mol
<i>SOC</i> _{cell}	cell state-of-charge	-	\dot{N}	self- discharge	S ⁻¹
1	applied current	А	ε	electrode porosity	-
V_{res}	reservoir volume	L	V _{cell}	cell volume	L
<i>C</i> ₀	V(acac)₃ concentration	М	\dot{V}	volumetric flowrate	L/s
E°	standard potential	V	θ	cell potential	V

Adaptive observer: real-time estimation of SOC and \dot{N}

Ascencio et al. 2019, American Control Conference

PID reservoir balancing control schematic

Goal: equalize hydraulic heads in half-cells in order to balance reservoirs

Electrolyte level sensing: USB camera and Python

- Mass sensing difficult due to sensitivity requirements, vibration from pumps
- Most submersible level sensors chemically incompatible
- Non-contact sensors (ultrasonic) impractical for small reservoirs

Camera feed of reservoirs

Liquid level height measurements

ng python

OpenCV

P = 0.5, I = 0.01, D = 0 (open circuit)

Inter- and intra-cycle volume imbalance

- Inter-cycle imbalance from pressure difference causes capacity fade
- Intra-cycle imbalance is observable, possibly function of SOC/current

Future work

- Probing intra-cycle imbalance for solvent migration, SOC/current relationship
- Longer term cycling and self-discharge experiments to understand membrane behavior
- Driving development of membranes optimised for disproportionation RFBs
- Operating systems at high active species concentrations

Conclusions

- Nonaqueous RFBs can be operated robustly and offer stable electrochemical performance
- RFBs with porous separators require new models for SOC estimation due to increased crossover
- Engineering solutions can measure, control, and strike balance between transport phenomena
- Balancing these transport phenomena and understanding the self-discharge behavior can enable high energy density disproportionation RFBs

Acknowledgements

- Monroe & Howey Groups
- STFC Batteries Network (ST/R006873/1)

Changed gasket design, connectors for higher sealing pressure

Final gasket design vs. original (PTFE, laser cut)

No leaks after over a month

>4x sealing pressure

Cheminert fitting (VICI) vs. compression fitting (McMaster-Carr)