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Disproportionation redox flow batteries (DRFBs)
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e Cell reaction: 2X = X* + X~
* |dentical oxidation states in fully discharged reservoirs

» Tolerant of active-species crossover
* Allow use of porous separators
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Current Density * Radius [mA/cm]

Vanadium acetylacetonate as a model chemistry
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Shinkle et al. 2011, Journal of Applied Electrochemistry
* At 40 mA/cm?, 0.1 M V(acac)s:
E= 2.2 V with acetonitrile as * Energy efficiency > 70%
solvent, TEABF, as salt * Energy density > 75% of theoretical

e >200 mW/cm? peak power density
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Vanadium acetylacetonate cycles stably

100 VE CE

80
N
% 60 EE
‘G _———+—10 mAcm?
£ 40 Cap,
L

20

40 mAcm™ T Cap,
0 manual rebalancing

0 40 80 120
Cycle Number

Saraidaridis and Monroe 2019, Journal of Power Sources

6 days of cycling shown
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Experimental setup for nonagueous DRFBs

Adapted from Milshtein et al. 2016, Energy & Env. Sci. and Saraidaridis and Monroe 2019, Journal of Power Sources
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Leak-free reactor design

Polypropylene Separator
Q PTFE Gasket
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Adapted from Milshtein et al. 2016, Energy & Env. Sci. and Saraidaridis and Monroe 2019, Journal of Power Sources

Flow Manifold
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Imbalance limits capacity and repeatability
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Multiples sources of crossover and imbalance

V(acac)3t + V(acac)3™ — 2 V(acac)s

Diffusion of actives, salt

Electroosmotic drag

Hydraulic permeation

(mechanical & osmotic)

Porous Separator

Molecular diffusion, from:

a) Concentration gradient of active species/salt ions
b) Solvent migration, from electro-osmotic drag of actives and salt ions [1]
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Pressure-driven permeation, from:

a) Difference in hydraulic head across half-cells [2]
b) Osmotic pressure from concentration differences

[1] Weber et al. 2011, J. Appl. Electrochem, [2] Li et al. 2014, ChemSusChem
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DRFB model for separator characterization
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* Higher crossover due to porous separator
* Lower coulombic efficiency: = 85%
* SOC via coulomb counting impractical

* Need for model which quantifies SOC and
self-discharge simultaneously
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Adaptive observer: real-time estimation of SOC and
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PID reservoir balancing control schematic
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Goal: equalize hydraulic heads in half-cells in order to balance reservoirs
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Electrolyte level sensing: USB camera and Python

* Mass sensing difficult due to sensitivity requirements, vibration from pumps
* Most submersible level sensors chemically incompatible

* Non-contact sensors (ultrasonic) impractical for small reservoirs

NN
Camera feed of reservoirs Liquid level height measurements
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FLowrate Bias (mL/min)

P=0.5,1=0.01, D=0 (open circuit)

1 1 1
| o NJ
NJ

Imbalance (mL), 25 mL Reservoir

T
I
N

50 100 150 200 250 300
Time (min)

12/16

350



Cell Potential (V)

Inter- and intra-cycle volume imbalance
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Inter-cycle imbalance from pressure difference causes capacity fade
Intra-cycle imbalance is observable, possibly function of SOC/current
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Future work

* Probing intra-cycle imbalance for solvent migration,
SOC/current relationship

* Longer term cycling and self-discharge experiments to
understand membrane behavior

* Driving development of membranes optimised for
disproportionation RFBs

* Operating systems at high active species concentrations
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Conclusions

Nonaqueous RFBs can be operated robustly and offer stable
electrochemical performance

RFBs with porous separators require new models for SOC
estimation due to increased crossover

Engineering solutions can measure, control, and strike balance
between transport phenomena

Balancing these transport phenomena and understanding the
self-discharge behavior can enable high energy density
disproportionation RFBs
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Changed gasket design, connectors for higher sealing pressure
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Final gasket design vs. original (PTFE, laser cut) No leaks after over a month

>4x sealing pressure
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Cheminert fitting (VICI) vs. compression fitting (McMaster-Carr)
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